Who Should Get a Covid-19 Vaccine First?


Archived series ("Inactive feed" status)

When? This feed was archived on January 09, 2021 04:30 (14d ago). Last successful fetch was on December 06, 2020 21:47 (2M ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 278173037 series 2515134
By Singularity Hub. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.
If the book of nature is written in the language of mathematics, as Galileo once declared, the Covid-19 pandemic has brought that truth home for the world’s mathematicians, who have been galvanized by the rapid spread of the coronavirus. So far this year, they have been involved in everything from revealing how contagious the novel coronavirus is, how far we should stand from each other, how long an infected person might shed the virus, how a single strain spread from Europe to New York and then burst across America, and how to “flatten the curve” to save hundreds of thousands of lives. Modeling also helped persuade the Centers for Disease Control and Prevention that the virus can be airborne and transmitted by aerosols that stay aloft for hours. And at the moment many are grappling with a particularly urgent—and thorny—area of research: modeling the optimal rollout of a vaccine. Because vaccine supply will be limited at first, the decisions about who gets those first doses could save tens of thousands of lives. This is critical now that promising early results are coming in about two vaccine candidates—one from Pfizer and BioNTech and one from Moderna—that may be highly effective and for which the companies may apply for emergency authorization from the Food and Drug Administration. But figuring out how to allocate vaccines—there are close to 50 in clinical trials on humans —to the right groups at the right time is “a very complex problem,” says Eva Lee, director of the Center for Operations Research in Medicine and Health Care at the Georgia Institute of Technology. Lee has modeled dispensing strategies for vaccines and medical supplies for Zika, Ebola, and influenza, and is now working on Covid-19. The coronavirus is “so infectious and so much more deadly than influenza,” she says. “We have never been challenged like that by a virus.” Howard Forman, a public health professor at Yale University, says “the last time we did mass vaccination with completely new vaccines,” was with smallpox and polio. “We are treading into an area we are not used to.” All the other vaccines of the last decades have either been tested for years or were introduced very slowly, he says. Because Covid-19 is especially lethal for those over 65 and those with other health problems such as obesity, diabetes, or asthma, and yet is spread rapidly and widely by healthy young adults who are more likely to recover, mathematicians are faced with two conflicting priorities when modeling for vaccines: Should they prevent deaths or slow transmission? The consensus among most modelers is that if the main goal is to slash mortality rates, officials must prioritize vaccinating those who are older, and if they want to slow transmission, they must target younger adults. “Almost no matter what, you get the same answer,” says Harvard epidemiologist Marc Lipsitch. Vaccinate the elderly first to prevent deaths, he says, and then move on to other, healthier groups or the general population. One recent study modeled how Covid-19 is likely to spread in six countries—the US, India, Spain, Zimbabwe, Brazil, and Belgium—and concluded that if the primary goal is to reduce mortality rates, adults over 60 should be prioritized for direct vaccination. The study, by Daniel Larremore and Kate Bubar of the University of Colorado Boulder, Lipsitch, and their colleagues, has been published as a preprint, meaning it has not yet been peer reviewed. Of course, when considering Covid-19’s outsized impact on minorities—especially Black and Latino communities—additional considerations for prioritization come into play. Most modelers agree that “everything is changing with coronavirus at the speed of light,” as applied mathematician Laura Matrajt, a research associate at the Fred Hutchinson Cancer Research Center in Seattle, put it in an email. That includes our understanding of how the virus spreads, how it attacks the body, how having another disease at the same time mig...

575 episodes